kmodes
or khaplotype
function.plot_cluster.Rd
Visulize clusters after using the cluster algorithms implemented in the functions.
This cluster plot make use of the function dapc
from package adegenet
and function scatter.dapc
from package adegenet
. The plot is based on
observation assignment and discriminant analysis of principal components, therefore,
when running the code, it will asks you to choose the number of PCs and the number
of discriminant functions to retain.
plot_cluster(res, xax = 1, yax = 2, isGene = FALSE)
res | Results returned from |
---|---|
xax | Integer specifying which principal components should be shown in x axes, default is 1. |
yax | Integer specifying which principal components should be shown in y axes, default is 2. Notice both xax and yax should be at least smaller than the number of discriminant functions choosed. |
isGene | Indicate if the clustering data is gene sequences, default if FALSE. |
A plot reflecting clustering results.
# use function \code{kmodes} if (FALSE) { data <- system.file("extdata", "zoo.int.data", package = "CClust") res_kmodes <- kmodes(K = 5, datafile = data, algorithm = "KMODES_HARTIGAN_WONG", init_method = "KMODES_INIT_AV07_GREEDY", n_init = 10) plot_cluster(res_kmodes) #Plot the clusters by using other principle components. plot_cluster(res_kmodes, xax = 2, yax = 3) } # use function \code{khaplotype} if (FALSE) { data <- system.file("extdata", "sim_small.fastq", package = "CClust") res_khap <- khaplotype(K = 5, datafile = data, n_init = 10) plot_cluster(res_khap, isGene = TRUE) }